IPv6 Network Security

its-security@lsu.edu
IPv6

- Raising awareness about IPv6
- IPv6 Basics
- Windows notes
- Windows Firewall Demo
- Linux (RHEL) Firewall Demo
- [Mac OS 10.7 Lion Firewall Notes]
- [AAAAA record via IPControl]
World IPv6 Launch

June 6, 2012
Traffic increase

Border Router - Traffic - Vl710 - (LSU-2-LONI-IPv6)

<table>
<thead>
<tr>
<th></th>
<th>Inbound</th>
<th>Outbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>75.37 M</td>
<td>4.77 M</td>
</tr>
<tr>
<td>Average</td>
<td>29.72 M</td>
<td>1.69 M</td>
</tr>
<tr>
<td>Maximum</td>
<td>228.32 M</td>
<td>32.87 M</td>
</tr>
</tbody>
</table>
IPv6 Accessible Sites at LSU

• www.lsu.edu
• www.law.lsu.edu
• www.eng.lsu.edu
• www.pete.lsu.edu
• grok.lsu.edu
• tigerware.lsu.edu
• connect.lsu.edu
The good news

- With IPv6 First-hop security
 - More difficult to go rogue
 - Block rogue router advertisements
 - Block rogue DHCP servers

- Very difficult for attacker to sweep the network
Current State

IPv4

IPv6
What's changing?

<table>
<thead>
<tr>
<th>Application</th>
<th>HTTP, SMTP, DNS, DHCP, Telnet, SSH, SMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>TLS/SSL</td>
</tr>
<tr>
<td>Session</td>
<td>NetBIOS, SOCKS</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP, SPX</td>
</tr>
<tr>
<td>Network</td>
<td>IP(IPv4, IPv6), ARP, ICMP, IPsec, AppleTalk</td>
</tr>
<tr>
<td>Data link</td>
<td>802.3, PPP, ATM</td>
</tr>
<tr>
<td>Physical</td>
<td>802.3, 802.11, DSL, IEEE 1394, USB, Bluetooth, RS232</td>
</tr>
</tbody>
</table>

Stay the same*

IPv6

*more or less
Looking Back

IPv4 Addressing scheme:
- 32-bit addresses, split into four, 8-bit blocks
- Therefore, each block has a value from 0 to 255

130.39.194.33

10000010 0010011 11000010 00100001
IPv6

- 128-bit addressing scheme
- Represented as 32 hexadecimal numbers in 8 blocks of 4 numbers.
- Each hexadecimal digit represents four bits and range from 0 to F in value.

IPv6 Address Shorthand

- Leading zeroes may be omitted
 - 2001:0db8:85a3:0000:0000:8a2e:0370:7334
 - 2001:db8:85a3:0:0:8a2e:370:7334
 IPv6 Address Shorthand

- Two or more \textbf{consecutive} blocks of zeros may be replaced with two colons ::
 - 2001:0db8:85a3:0000:0000:8a2e:0370:7334
 - 2001:db8:85a3::8a2e:370:7334
 - but not a single block:
 - 2001:db8:0:1:1:1:1:1
IPv6 Address Shorthand

- Compress leftmost zero groups
 - 2001:0db8:0000:0000:0001:0000:0000:0001
 - 2001:db8::1:0:0:1
 - Not valid: 2001:db8:0:0:1::1
 - Can only compress **ONCE**
 - Not valid: 2001:db8::1::1

- Use lower-case letters

- Shorten as much as possible
IPv6 @ LSU

- Dual stack network
- Every machine has an IPv4 and IPv6 address
- Address Space: 2620:105:b000::/40
- Automatic assignment using EIU-64
- No support for tunneling (6to4, Teredo, ISATAP)
IPv6 Address

<table>
<thead>
<tr>
<th>bits</th>
<th>48 or more</th>
<th>16 or fewer</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>routing prefix</td>
<td>subnet ID</td>
<td>Interface ID</td>
</tr>
</tbody>
</table>

Interface ID

- LSU uses modified EIU-64 for stateless address autoconfiguration
- Based on the 48-bit MAC address
- For privacy, some operating systems generate a random 48-bit address
- LSU is currently looking into DHCPv6 as a replacement
Interface ID - EIU-64

- Take a 48-bit MAC address:
 - 08:00:27:92:93:BA
 - Insert FF:FE in the middle
 - 0800:27FF:FE92:93BA
 - Invert the seventh bit from the left.
 - 0800:27FF:FE92:93BA

\[
\begin{array}{c|c}
0000 & 1000 \\
\hline
0000 & 1010 \\
\end{array}
\]

2620:105:b000:2180:0a00:27ff:fe92:93ba
Notable IPv6 Address Spaces

- Unspecified ::/128
- Loopback: ::1/128
- Unique local: fc00::/7
- Link-local: fe80::/10
 - Multicast: ff00::/8
IPv4 equivalent spaces

Main Campus & Wireless
130.39.0.0/16
173.253.128.0/17
96.125.0.0/17

Building Subnets
Example:
130.39.194.0/24
130.39.193.0/24
10.0.20.0/24

2620:105:b000::/40
2620:105:b000:2000::/52
Even more restrictive

- Match building ID and VLAN:
 - 2620:105:b000:2180::/64
- Finally, specific host:
Windows Disabling Tunnelling

● Manually:
 ○ netsh interface teredo set state disabled
 ○ netsh interface ipv6 6to4 set state state=disabled undoonstop=disabled
 ○ netsh interface ipv6 isatap set state state=disabled

● Easy way:
 ○ http://support.microsoft.com/kb/929852
Windows 7 Temporary IPv6 Address

● For privacy, Windows 7 also generates a random IPv6 address that changes often:
 ○ Every Windows 7 machine has 3 IPv6 Addresses
 ■ Fixed global
 ■ Temporary global
 ■ Link-Local

● Temporary address is used for actual IPv6 communications

● Could be a problem for firewall rules
 ○ `netsh int ipv6 set privacy disabled`
 ○ `reboot`
Windows Firewall Demo

- Unified both protocols
- Very simple
- Must specify both IPv4 and IPv6 scopes
Linux Firewall Demo(ip6tables)

- Very similar to iptables for IPv4
 - Support for NAT and redirections are in the works

- Make sure ip6tables service is set to run on system startup(runlevels 2 to 5):
 - `chkconfig --list | grep ip6tables`
 - if not: `chkconfig ip6tables on`

- Configuration file:
 - `/etc/sysconfig/ip6tables`
 - Be careful, system-config-firewall may overwrite your changes
 - Restart ip6tables service after changes are made:
 - `service ip6tables restart`
Sample

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p ipv6-icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp6-adm-prohibited
-A FORWARD -j REJECT --reject-with icmp6-adm-prohibited
COMMIT
ip6tables

Open port 80:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT

Restrict port 80 to campus only:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -s 2620:105:b000::/40 -j ACCEPT

Restrict port 80 to building subnets:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -s 2620:105:b000:2000::/52 -j ACCEPT
ip6tables

Restrict port 80 to building subnets and VLAN:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -s 2620:105:b000:2180::/64 -j ACCEPT

Allow only a particular IPv6 Address:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -s 2620:105:b000:8500:250:56ff:fea4:63/128 -j ACCEPT

Block subnet:
-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -s 2620:105:b00b:4800::/64 -j DROP
Mac OS X Notes

- Also uses temporary IPv6 address
 - `sysctl net.inet6.ip6.use_tempaddr=0`

- By default, Mac OS X firewall is OFF
 - Remember to enable firewall after OS installation/upgrade
Mac OS X firewall (pf)

● The GUI firewall is an application firewall
 ○ Rules are based on applications instead of ports or IP addresses
 ○ Free front end for pf (IceFloor):
 ■ http://www.hanynet.com/icefloor
 ■ Application firewall does not override pf rules

● Please see me after presentation if you're running OS X server.
Thank you!

Next topic?

Anybody?